A Deep Dive into Computer Networking for Web Development

<u>Presented By</u>: Yingquan Li <u>Date</u>: Fri. 3/17/23 @ 10:30 AM EST

About Me

Name: Yingquan Li

- Full-time Student @ Virginia Tech (M.S. in IT expected in 08/23)

Bio: I'm an engineer who has worked in both the private & public sectors. Most recently, I worked in academia. Long time networking hobbyist!

Work: U. of Pennsylvania, Deloitte, PwC, Gartner, HPE

Should a web developer learn about networking?

• Frontend Developer

Backend Developer

Talk Outline

- <u>Fundamental Concepts</u>: TCP/IP Model, IPv4/IPv6 addresses, subnetting, routing, TCP/UDP, Sockets/Ports, DNS, HTTP Protocol
- Networking with the **command-line interface**.
- Networking with **Python**.

Fundamental Concepts

$\textbf{OSI Model} \rightarrow \textbf{TCP/IP Model}$

- **APPLICATION**: Work with interfaces, protocols, software.
- TRANSPORT: Error-free data delivery between host → destination nodes.
- **INTERNET**: Package data into IP packets; transmit packets across the network.
- **NETWORK INTERFACE**: Transmit bits across the network.

IPv4 & IPv6 Addresses

IPv4 Address (32-bits): 18.154.277.99

IPv4	1st Octet	2nd Octet	3rd Octet	4th Octet
Dotted-Decimal	18	154	227	99
Binary Digits	00010010	10011010	11100011	01100011

IPv6 Address (128-bits): 2001:0DB8:AC10:FE01::

IPv6	Hex #s							
<mark>Colon-</mark> Hex	2001	0DB8	AC10	FE01	0000	0000	0000	0000
<mark>Binary</mark> Digits	00100000 00000001	00001101 10111000	10101100 00010000	11111110 00000001	00000000 00000000	00000000 00000000	00000000 00000000	00000000 00000000

IPv4 Subnetting (Part 1)

A routable IPv4's address class:

Address Class	Value in First Octet	Classful Mask (Dotted Decimal)	CIDR** Notation
Class A	1 - 126	255.0.0.0	/8
Class B	128 - 191	255.255.0.0	/16
Class C	192 - 223	255.255.255.0	/24
Class D	224 - 239	-	-

* We skip 127 because 127.0.0.1 is reserved (i.e. loopback address).

** CIDR: Classless Inter-Domain Routing

A **routable IPv4**'s address can be broken into the <u>network</u> and <u>host</u> portion:

Image Source

IPv4 Subnetting (Part 2)

Subnetting: Take large network a split it into smaller networks.

1	2	4	8	16	32	64	128
2 ⁰	2 ¹	2 ²	2 ³	2 ⁴	2 ⁵	2 ⁶	2 ⁷

Subnetting Masks:

- Modify subnets so that they are scoped properly.
- Default classful subnet mask may not give optimal subnet size.

Jason Dion, Network+

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Binary: 11000000.10111010.00000011.0000000

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Number of Created Subnets = $2^2 \Rightarrow 4$

Number of Allocable IP Addresses / Subnet = 2^6 - $2 \Rightarrow 62$

Formula #1: Number of Created Subnets = 2⁵ (s is the number of borrowed bits)

Formula #2: Number of Allocable IP Addresses per Subnet = 2^h - 2 (h is the number of host bits)

• Subtract 2 for the <u>network</u> and <u>broadcast</u> addresses!

Example: 192.186.3.0/26

Number of Created Subnets = $2^2 \Rightarrow 4$

Number of Allocable IP Addresses / Subnet = $2^6 - 2 \Rightarrow 62$

- **1st Subnet:** 192.186.3.<mark>0</mark> → 192.186.3.<mark>63</mark>
- **2nd Subnet**: 192.186.3.64 \rightarrow 192.186.3.127
- 3rd Subnet: 192.186.3.128 → 192. 186.3.191
- 4th Subnet: 192.186.3.192 \rightarrow 192.186.3.255
- Network ID (First IP): 0, 64, 128, 192
- Broadcast (Last IP): 63, 127, 191, 255

Routing

• Facilitates communication between subnets/networks.

• Separates broadcast domains.

 Operates at OSI Model - Level 3 (Network) and TCP/IP Model -Level 2 (Internet).

FIGURE 10-5 Directly Connected Routes

Routing + Network Address Translation (NAT)

TCP vs. UDP

- Operates at OSI Model Level 4 (**Transport**) and TCP/IP Model Level 3 (**Transport**).
- Host-to-host communication via the Internet.
- I've met **Vint Cerf** personally twice!

ТСР	UDP
 Connection-oriented Data remains intact; arrives in the same order Slower Heavyweight <u>Use cases</u>: Email, web browsing 	 Connectionless Not guaranteed that packets will reach destination at all Faster Lightweight <u>Use cases</u>: VoIP, music streaming

Socket

- Sockets are what most web libraries work with.
- Sockets are also known as a connection's **endpoint** across a network.

Consists of:

- **1.** A transport protocol (TCP, UDP).
- 2. An IP address (IPv4 or IPv6).
- **3.** A port (Port 80 is web server default).

Domain Name System (DNS)

Domain Names: labels separated by dots.

- www.yahoo.com
 - .com is the root domain.
 - *yahoo.com* is a subdomain of com.
 - www.yahoo.com is a subdomain of yahoo.com

Networking with the Command-Line Interface

Key Networking Commands

Mac:

- arp/arp-a
- ifconfig
- ping
- traceroute
- netstat
- nslookup / host
- dig
- route

Windows:

- arp/arp-a
- Ipconfig / ipconfig /all
- ping
- tracert
- nbtstat
- netstat
- nslookup
- route

Networking with Python

Python Networking Resources

https://docs.python.org/3/library/ipc.html

• <u>https://www.yeahhub.com/top-7-python-libraries-networking-programming/</u>

References:

- Jason Dion (Udemy Network+ Class)
 - <u>https://docs.google.com/document/d/1ghng228GURwrnHaTSSE8uVZErRumFDP-Rg5mKo7</u>
 <u>hsAk/edit</u>
- Kendall Giles (ECE5480 Network Security)
 - <u>https://docs.google.com/document/d/1oX3vwq-Aktl4aR1pPEXhiHbFk1BlPf3yowdkXq4r17l</u> /edit
- Gregory Kulczycki (CS5244 Software Engineering)
 - <u>https://docs.google.com/document/d/1-3c81BQjsmGG1MIRYJPoFXRaTIdKUj3c3D2Zj4qp6</u>
 <u>80/edit</u>

Slides that will not be presented.

Additional Tasks

Finish subnetting slides
 Make decision on DNS
 Spell check!
 Add picture sources
 Finish Networking with Python section

- Think about concluding massage
- Think about concluding message.